MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. S39274 Stainless Steel

Grade 23 titanium belongs to the titanium alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 6.7 to 11
17
Fatigue Strength, MPa 470 to 500
380
Poisson's Ratio 0.32
0.27
Reduction in Area, % 30
34
Rockwell C Hardness 32
28
Shear Modulus, GPa 40
81
Shear Strength, MPa 540 to 570
560
Tensile Strength: Ultimate (UTS), MPa 930 to 940
900
Tensile Strength: Yield (Proof), MPa 850 to 870
620

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1480
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
4.3
Embodied Energy, MJ/kg 610
60
Embodied Water, L/kg 200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
32
Strength to Weight: Bending, points 48
26
Thermal Diffusivity, mm2/s 2.9
4.2
Thermal Shock Resistance, points 67 to 68
25

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
57 to 65.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.24 to 0.32
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 88.1 to 91
0
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0