MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. S45000 Stainless Steel

Grade 23 titanium belongs to the titanium alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7 to 11
6.8 to 14
Fatigue Strength, MPa 470 to 500
330 to 650
Poisson's Ratio 0.32
0.28
Reduction in Area, % 30
22 to 50
Rockwell C Hardness 32
28 to 44
Shear Modulus, GPa 40
76
Shear Strength, MPa 540 to 570
590 to 830
Tensile Strength: Ultimate (UTS), MPa 930 to 940
980 to 1410
Tensile Strength: Yield (Proof), MPa 850 to 870
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
840
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
17
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.8
Embodied Energy, MJ/kg 610
39
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
850 to 4400
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
35 to 50
Strength to Weight: Bending, points 48
28 to 36
Thermal Diffusivity, mm2/s 2.9
4.5
Thermal Shock Resistance, points 67 to 68
33 to 47

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0
1.3 to 1.8
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
72.1 to 79.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants