MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. 4015 Aluminum

Grade 25 titanium belongs to the titanium alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
1.1 to 23
Fatigue Strength, MPa 550
46 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600
82 to 120
Tensile Strength: Ultimate (UTS), MPa 1000
130 to 220
Tensile Strength: Yield (Proof), MPa 940
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
420
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
600
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
160
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 43
8.1
Embodied Energy, MJ/kg 700
150
Embodied Water, L/kg 320
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
18 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62
13 to 22
Strength to Weight: Bending, points 50
21 to 30
Thermal Diffusivity, mm2/s 2.8
66
Thermal Shock Resistance, points 71
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
94.9 to 97.9
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0
0.6 to 1.2
Nickel (Ni), % 0.3 to 0.8
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
1.4 to 2.2
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15