MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. ACI-ASTM CD4MCuN Steel

Grade 25 titanium belongs to the titanium alloys classification, while ACI-ASTM CD4MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is ACI-ASTM CD4MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
18
Fatigue Strength, MPa 550
340
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 1000
770
Tensile Strength: Yield (Proof), MPa 940
550

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
17
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
3.5
Embodied Energy, MJ/kg 700
49
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
28
Strength to Weight: Bending, points 50
24
Thermal Diffusivity, mm2/s 2.8
4.5
Thermal Shock Resistance, points 71
21

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 0
2.7 to 3.3
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
59.5 to 66.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.7 to 2.3
Nickel (Ni), % 0.3 to 0.8
4.7 to 6.0
Nitrogen (N), % 0 to 0.050
0.1 to 0.25
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0