MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. AISI 316L Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
9.0 to 50
Fatigue Strength, MPa 550
170 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 600
370 to 690
Tensile Strength: Ultimate (UTS), MPa 1000
530 to 1160
Tensile Strength: Yield (Proof), MPa 940
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
870
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 43
3.9
Embodied Energy, MJ/kg 700
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
93 to 1880
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
19 to 41
Strength to Weight: Bending, points 50
18 to 31
Thermal Diffusivity, mm2/s 2.8
4.1
Thermal Shock Resistance, points 71
12 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
62 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.3 to 0.8
10 to 14
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0