MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. AISI 445 Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
25
Fatigue Strength, MPa 550
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 600
310
Tensile Strength: Ultimate (UTS), MPa 1000
480
Tensile Strength: Yield (Proof), MPa 940
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
950
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
21
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.6
Embodied Energy, MJ/kg 700
38
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
17
Strength to Weight: Bending, points 50
18
Thermal Diffusivity, mm2/s 2.8
5.6
Thermal Shock Resistance, points 71
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.3 to 0.6
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
74.9 to 80.7
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 0.8
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.050
0 to 0.030
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0