MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. ASTM A356 Grade 1

Grade 25 titanium belongs to the titanium alloys classification, while ASTM A356 grade 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is ASTM A356 grade 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 550
200
Poisson's Ratio 0.32
0.29
Reduction in Area, % 29
39
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1000
550
Tensile Strength: Yield (Proof), MPa 940
280

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
51
Thermal Expansion, µm/m-K 9.6
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
1.4
Embodied Energy, MJ/kg 700
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62
20
Strength to Weight: Bending, points 50
19
Thermal Diffusivity, mm2/s 2.8
14
Thermal Shock Resistance, points 71
18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.35
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
98.3 to 100
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0.3 to 0.8
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0