MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. AWS E409Nb

Grade 25 titanium belongs to the titanium alloys classification, while AWS E409Nb belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
500
Tensile Strength: Yield (Proof), MPa 940
380

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
25
Thermal Expansion, µm/m-K 9.6
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
2.9
Embodied Energy, MJ/kg 700
42
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
18
Strength to Weight: Bending, points 50
18
Thermal Diffusivity, mm2/s 2.8
6.8
Thermal Shock Resistance, points 71
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
80.2 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.3 to 0.8
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0