MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. EN 1.4923 Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
12 to 21
Fatigue Strength, MPa 550
300 to 440
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
40 to 46
Shear Modulus, GPa 40
76
Shear Strength, MPa 600
540 to 590
Tensile Strength: Ultimate (UTS), MPa 1000
870 to 980
Tensile Strength: Yield (Proof), MPa 940
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
740
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
24
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
2.9
Embodied Energy, MJ/kg 700
41
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
570 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
31 to 35
Strength to Weight: Bending, points 50
26 to 28
Thermal Diffusivity, mm2/s 2.8
6.5
Thermal Shock Resistance, points 71
30 to 34

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
83.5 to 87.1
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0.3 to 0.8
0.3 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0.25 to 0.35
Residuals, % 0 to 0.4
0