MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. CC767S Brass

Grade 25 titanium belongs to the titanium alloys classification, while CC767S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
34
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 1000
430
Tensile Strength: Yield (Proof), MPa 940
150

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
840
Melting Onset (Solidus), °C 1560
790
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
36

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
2.7
Embodied Energy, MJ/kg 700
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
100
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
15
Strength to Weight: Bending, points 50
16
Thermal Diffusivity, mm2/s 2.8
34
Thermal Shock Resistance, points 71
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0.1 to 0.8
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 64
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 0.8
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
32.8 to 41.9
Residuals, % 0 to 0.4
0