MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. Sintered 2014 Aluminum

Grade 25 titanium belongs to the titanium alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
0.5 to 3.0
Fatigue Strength, MPa 550
52 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 1000
140 to 290
Tensile Strength: Yield (Proof), MPa 940
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
560
Specific Heat Capacity, J/kg-K 560
880
Thermal Conductivity, W/m-K 7.1
130
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 43
8.0
Embodied Energy, MJ/kg 700
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
68 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
47
Strength to Weight: Axial, points 62
13 to 27
Strength to Weight: Bending, points 50
20 to 33
Thermal Diffusivity, mm2/s 2.8
51
Thermal Shock Resistance, points 71
6.2 to 13

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
91.5 to 96.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
3.5 to 5.0
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 0
0.2 to 0.8
Nickel (Ni), % 0.3 to 0.8
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 1.2
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0
0 to 1.5