MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. C48200 Brass

Grade 25 titanium belongs to the titanium alloys classification, while C48200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11
15 to 40
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Shear Strength, MPa 600
260 to 300
Tensile Strength: Ultimate (UTS), MPa 1000
400 to 500
Tensile Strength: Yield (Proof), MPa 940
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
900
Melting Onset (Solidus), °C 1560
890
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
120
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
29

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
2.7
Embodied Energy, MJ/kg 700
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
120 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62
14 to 17
Strength to Weight: Bending, points 50
15 to 17
Thermal Diffusivity, mm2/s 2.8
38
Thermal Shock Resistance, points 71
13 to 16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
59 to 62
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Nickel (Ni), % 0.3 to 0.8
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4