MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. C85800 Brass

Grade 25 titanium belongs to the titanium alloys classification, while C85800 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11
15
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 1000
380
Tensile Strength: Yield (Proof), MPa 940
210

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
900
Melting Onset (Solidus), °C 1560
870
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
84
Thermal Expansion, µm/m-K 9.6
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
22

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
2.8
Embodied Energy, MJ/kg 700
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
48
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
13
Strength to Weight: Bending, points 50
15
Thermal Diffusivity, mm2/s 2.8
27
Thermal Shock Resistance, points 71
13

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
57 to 69
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0
0 to 0.25
Nickel (Ni), % 0.3 to 0.8
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3