MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. K93050 Alloy

Grade 25 titanium belongs to the titanium alloys classification, while K93050 alloy belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 1000
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
460
Thermal Expansion, µm/m-K 9.6
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 43
4.7
Embodied Energy, MJ/kg 700
65
Embodied Water, L/kg 320
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62
17 to 23
Strength to Weight: Bending, points 50
17 to 21
Thermal Shock Resistance, points 71
16 to 21

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
61.4 to 63.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 0.8
36
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0