MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. S31254 Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
40
Fatigue Strength, MPa 550
290
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
56
Shear Modulus, GPa 40
80
Shear Strength, MPa 600
490
Tensile Strength: Ultimate (UTS), MPa 1000
720
Tensile Strength: Yield (Proof), MPa 940
330

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1090
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
14
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
5.5
Embodied Energy, MJ/kg 700
74
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62
25
Strength to Weight: Bending, points 50
22
Thermal Diffusivity, mm2/s 2.8
3.8
Thermal Shock Resistance, points 71
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 0
0.5 to 1.0
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
51.4 to 56.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0.3 to 0.8
17.5 to 18.5
Nitrogen (N), % 0 to 0.050
0.18 to 0.22
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0