MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. S32654 Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11
45
Fatigue Strength, MPa 550
450
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
46
Shear Modulus, GPa 40
82
Shear Strength, MPa 600
590
Tensile Strength: Ultimate (UTS), MPa 1000
850
Tensile Strength: Yield (Proof), MPa 940
490

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
11
Thermal Expansion, µm/m-K 9.6
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 43
6.4
Embodied Energy, MJ/kg 700
87
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
330
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
29
Strength to Weight: Bending, points 50
25
Thermal Diffusivity, mm2/s 2.8
2.9
Thermal Shock Resistance, points 71
19

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 0
0.3 to 0.6
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
38.3 to 45.3
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0.3 to 0.8
21 to 23
Nitrogen (N), % 0 to 0.050
0.45 to 0.55
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0