MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. S40920 Stainless Steel

Grade 25 titanium belongs to the titanium alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
22
Fatigue Strength, MPa 550
130
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 600
270
Tensile Strength: Ultimate (UTS), MPa 1000
430
Tensile Strength: Yield (Proof), MPa 940
190

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
710
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
26
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.0
Embodied Energy, MJ/kg 700
28
Embodied Water, L/kg 320
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
97
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
15
Strength to Weight: Bending, points 50
16
Thermal Diffusivity, mm2/s 2.8
6.9
Thermal Shock Resistance, points 71
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
85.1 to 89.4
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 0.8
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0 to 0.030
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 86.7 to 90.6
0.15 to 0.5
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0