MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. EN 1.4594 Stainless Steel

Grade 28 titanium belongs to the titanium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
11 to 17
Fatigue Strength, MPa 330 to 480
490 to 620
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 420 to 590
620 to 700
Tensile Strength: Ultimate (UTS), MPa 690 to 980
1020 to 1170
Tensile Strength: Yield (Proof), MPa 540 to 810
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
820
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
16
Thermal Expansion, µm/m-K 9.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 37
3.2
Embodied Energy, MJ/kg 600
45
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 61
36 to 41
Strength to Weight: Bending, points 39 to 49
29 to 31
Thermal Diffusivity, mm2/s 3.4
4.4
Thermal Shock Resistance, points 47 to 66
34 to 39

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
72.6 to 79.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0