MakeItFrom.com
Menu (ESC)

Grade 28 Titanium vs. SAE-AISI 1140 Steel

Grade 28 titanium belongs to the titanium alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 28 titanium and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
14 to 18
Fatigue Strength, MPa 330 to 480
230 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
39 to 46
Shear Modulus, GPa 40
72
Shear Strength, MPa 420 to 590
370 to 420
Tensile Strength: Ultimate (UTS), MPa 690 to 980
600 to 700
Tensile Strength: Yield (Proof), MPa 540 to 810
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.3
51
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 37
1.4
Embodied Energy, MJ/kg 600
18
Embodied Water, L/kg 370
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 3100
310 to 870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 61
21 to 25
Strength to Weight: Bending, points 39 to 49
20 to 22
Thermal Diffusivity, mm2/s 3.4
14
Thermal Shock Resistance, points 47 to 66
18 to 21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.37 to 0.44
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.4 to 98.9
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 92.4 to 95.4
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0