MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. ASTM A182 Grade F3VCb

Grade 29 titanium belongs to the titanium alloys classification, while ASTM A182 grade F3VCb belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
21
Fatigue Strength, MPa 460 to 510
320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17
50
Shear Modulus, GPa 40
74
Shear Strength, MPa 550 to 560
420
Tensile Strength: Ultimate (UTS), MPa 930 to 940
670
Tensile Strength: Yield (Proof), MPa 850 to 870
460

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
470
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.3
40
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.5
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 39
2.4
Embodied Energy, MJ/kg 640
33
Embodied Water, L/kg 410
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
24
Strength to Weight: Bending, points 47 to 48
22
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 68 to 69
19

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.080
0.1 to 0.15
Chromium (Cr), % 0
2.7 to 3.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
93.8 to 95.8
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 88 to 90.9
0 to 0.015
Vanadium (V), % 3.5 to 4.5
0.2 to 0.3
Residuals, % 0 to 0.4
0