MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. S20910 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
14 to 39
Fatigue Strength, MPa 460 to 510
310 to 460
Poisson's Ratio 0.32
0.28
Reduction in Area, % 17
56 to 62
Shear Modulus, GPa 40
79
Shear Strength, MPa 550 to 560
500 to 570
Tensile Strength: Ultimate (UTS), MPa 930 to 940
780 to 940
Tensile Strength: Yield (Proof), MPa 850 to 870
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1080
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
13
Thermal Expansion, µm/m-K 9.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
22
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
4.8
Embodied Energy, MJ/kg 640
68
Embodied Water, L/kg 410
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
460 to 1640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
28 to 33
Strength to Weight: Bending, points 47 to 48
24 to 27
Thermal Diffusivity, mm2/s 2.9
3.6
Thermal Shock Resistance, points 68 to 69
17 to 21

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
52.1 to 62.1
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0 to 0.030
0.2 to 0.4
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0.1 to 0.3
Residuals, % 0 to 0.4
0

Comparable Variants