MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. 1070 Aluminum

Grade 31 titanium belongs to the titanium alloys classification, while 1070 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 20
4.5 to 39
Fatigue Strength, MPa 300
22 to 49
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 320
48 to 79
Tensile Strength: Ultimate (UTS), MPa 510
73 to 140
Tensile Strength: Yield (Proof), MPa 450
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
230
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
61
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
200

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.3
Embodied Energy, MJ/kg 600
160
Embodied Water, L/kg 230
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 940
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 32
7.5 to 14
Strength to Weight: Bending, points 32
14 to 22
Thermal Diffusivity, mm2/s 8.5
94
Thermal Shock Resistance, points 39
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0
99.7 to 100
Carbon (C), % 0 to 0.080
0
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
0 to 0.040
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.25
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.030
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 97.9 to 99.76
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030