MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. EN 1.4655 Stainless Steel

Grade 31 titanium belongs to the titanium alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
23 to 25
Fatigue Strength, MPa 300
320
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
78
Shear Strength, MPa 320
460
Tensile Strength: Ultimate (UTS), MPa 510
720 to 730
Tensile Strength: Yield (Proof), MPa 450
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1050
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.9
Embodied Energy, MJ/kg 600
41
Embodied Water, L/kg 230
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 940
510 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
26
Strength to Weight: Bending, points 32
23
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 39
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
1.0 to 3.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
63.6 to 73.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0 to 0.050
0.050 to 0.2
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0