MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. CR016A Copper

Grade 31 titanium belongs to the titanium alloys classification, while CR016A copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is CR016A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 510
230
Tensile Strength: Yield (Proof), MPa 450
140

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1040
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
390
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
98
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
99

Otherwise Unclassified Properties

Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 36
2.7
Embodied Energy, MJ/kg 600
42
Embodied Water, L/kg 230
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
31
Resilience: Unit (Modulus of Resilience), kJ/m3 940
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 32
7.1
Strength to Weight: Bending, points 32
9.3
Thermal Diffusivity, mm2/s 8.5
110
Thermal Shock Resistance, points 39
8.1

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0 to 0.080
0
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
99.843 to 99.919
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0.0010 to 0.0070
Silver (Ag), % 0
0.080 to 0.12
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0