MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. SAE-AISI H12 Steel

Grade 31 titanium belongs to the titanium alloys classification, while SAE-AISI H12 steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is SAE-AISI H12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 510
690 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1610
1440
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
36
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
9.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
2.9
Embodied Energy, MJ/kg 600
41
Embodied Water, L/kg 230
76

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
24 to 65
Strength to Weight: Bending, points 32
22 to 42
Thermal Diffusivity, mm2/s 8.5
9.8
Thermal Shock Resistance, points 39
22 to 60

Alloy Composition

Carbon (C), % 0 to 0.080
0.3 to 0.4
Chromium (Cr), % 0
4.8 to 5.5
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
87.8 to 91.7
Manganese (Mn), % 0
0.2 to 0.5
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.9 to 99.76
0
Tungsten (W), % 0
1.0 to 1.7
Vanadium (V), % 0
0 to 0.5
Residuals, % 0 to 0.4
0