MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. S34565 Stainless Steel

Grade 31 titanium belongs to the titanium alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 20
39
Fatigue Strength, MPa 300
400
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
45
Shear Modulus, GPa 41
80
Shear Strength, MPa 320
610
Tensile Strength: Ultimate (UTS), MPa 510
900
Tensile Strength: Yield (Proof), MPa 450
470

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
5.3
Embodied Energy, MJ/kg 600
73
Embodied Water, L/kg 230
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
300
Resilience: Unit (Modulus of Resilience), kJ/m3 940
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
32
Strength to Weight: Bending, points 32
26
Thermal Diffusivity, mm2/s 8.5
3.2
Thermal Shock Resistance, points 39
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0.4 to 0.6
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0