Grade 35 Titanium vs. Grade 9 Titanium
Both grade 35 titanium and grade 9 titanium are titanium alloys. They have a very high 96% of their average alloy composition in common.
For each property being compared, the top bar is grade 35 titanium and the bottom bar is grade 9 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
110 |
Elongation at Break, % | 5.6 | |
11 to 17 |
Fatigue Strength, MPa | 330 | |
330 to 480 |
Poisson's Ratio | 0.32 | |
0.32 |
Reduction in Area, % | 23 | |
28 |
Shear Modulus, GPa | 41 | |
40 |
Shear Strength, MPa | 580 | |
430 to 580 |
Tensile Strength: Ultimate (UTS), MPa | 1000 | |
700 to 960 |
Tensile Strength: Yield (Proof), MPa | 630 | |
540 to 830 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
410 |
Maximum Temperature: Mechanical, °C | 320 | |
330 |
Melting Completion (Liquidus), °C | 1630 | |
1640 |
Melting Onset (Solidus), °C | 1580 | |
1590 |
Specific Heat Capacity, J/kg-K | 550 | |
550 |
Thermal Conductivity, W/m-K | 7.4 | |
8.1 |
Thermal Expansion, µm/m-K | 9.3 | |
9.1 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.1 | |
1.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.2 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 37 | |
37 |
Density, g/cm3 | 4.6 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 33 | |
36 |
Embodied Energy, MJ/kg | 530 | |
580 |
Embodied Water, L/kg | 170 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 49 | |
89 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1830 | |
1380 to 3220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
35 |
Strength to Weight: Axial, points | 61 | |
43 to 60 |
Strength to Weight: Bending, points | 49 | |
39 to 48 |
Thermal Diffusivity, mm2/s | 3.0 | |
3.3 |
Thermal Shock Resistance, points | 70 | |
52 to 71 |
Alloy Composition
Aluminum (Al), % | 4.0 to 5.0 | |
2.5 to 3.5 |
Carbon (C), % | 0 to 0.080 | |
0 to 0.080 |
Hydrogen (H), % | 0 to 0.015 | |
0 to 0.015 |
Iron (Fe), % | 0.2 to 0.8 | |
0 to 0.25 |
Molybdenum (Mo), % | 1.5 to 2.5 | |
0 |
Nitrogen (N), % | 0 to 0.050 | |
0 to 0.030 |
Oxygen (O), % | 0 to 0.25 | |
0 to 0.15 |
Silicon (Si), % | 0.2 to 0.4 | |
0 |
Titanium (Ti), % | 88.4 to 93 | |
92.6 to 95.5 |
Vanadium (V), % | 1.1 to 2.1 | |
2.0 to 3.0 |
Residuals, % | 0 | |
0 to 0.4 |