MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. N08332 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
34
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 580
350
Tensile Strength: Ultimate (UTS), MPa 1000
520
Tensile Strength: Yield (Proof), MPa 630
210

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1050
Melting Completion (Liquidus), °C 1630
1390
Melting Onset (Solidus), °C 1580
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.4
12
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
32
Density, g/cm3 4.6
8.0
Embodied Carbon, kg CO2/kg material 33
5.4
Embodied Energy, MJ/kg 530
77
Embodied Water, L/kg 170
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
18
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 3.0
3.1
Thermal Shock Resistance, points 70
12

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.4
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0