Grade 36 Titanium vs. EN 1.0314 Steel
Grade 36 titanium belongs to the titanium alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.
For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN 1.0314 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 11 | |
24 to 25 |
Fatigue Strength, MPa | 300 | |
140 to 220 |
Poisson's Ratio | 0.36 | |
0.29 |
Shear Modulus, GPa | 39 | |
73 |
Shear Strength, MPa | 320 | |
200 to 250 |
Tensile Strength: Ultimate (UTS), MPa | 530 | |
320 to 400 |
Tensile Strength: Yield (Proof), MPa | 520 | |
190 to 310 |
Thermal Properties
Latent Heat of Fusion, J/g | 370 | |
250 |
Maximum Temperature: Mechanical, °C | 320 | |
400 |
Melting Completion (Liquidus), °C | 2020 | |
1470 |
Melting Onset (Solidus), °C | 1950 | |
1430 |
Specific Heat Capacity, J/kg-K | 420 | |
470 |
Thermal Expansion, µm/m-K | 8.1 | |
12 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.3 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 58 | |
1.4 |
Embodied Energy, MJ/kg | 920 | |
18 |
Embodied Water, L/kg | 130 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 59 | |
68 to 87 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1260 | |
95 to 250 |
Stiffness to Weight: Axial, points | 9.3 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 23 | |
11 to 14 |
Strength to Weight: Bending, points | 23 | |
13 to 15 |
Thermal Shock Resistance, points | 45 | |
10 to 13 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.020 to 0.060 |
Carbon (C), % | 0 to 0.030 | |
0 to 0.030 |
Hydrogen (H), % | 0 to 0.0035 | |
0 |
Iron (Fe), % | 0 to 0.030 | |
99.365 to 99.78 |
Manganese (Mn), % | 0 | |
0.2 to 0.4 |
Niobium (Nb), % | 42 to 47 | |
0 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.16 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.020 |
Silicon (Si), % | 0 | |
0 to 0.1 |
Sulfur (S), % | 0 | |
0 to 0.025 |
Titanium (Ti), % | 52.3 to 58 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |