MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C90400 Bronze

Grade 36 titanium belongs to the titanium alloys classification, while C90400 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
24
Poisson's Ratio 0.36
0.34
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 530
310
Tensile Strength: Yield (Proof), MPa 520
180

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
990
Melting Onset (Solidus), °C 1950
850
Specific Heat Capacity, J/kg-K 420
370
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.7
Embodied Carbon, kg CO2/kg material 58
3.5
Embodied Energy, MJ/kg 920
56
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
150
Stiffness to Weight: Axial, points 9.3
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
10
Strength to Weight: Bending, points 23
12
Thermal Shock Resistance, points 45
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7