MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. C90400 Bronze

Grade 37 titanium belongs to the titanium alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
24
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 390
310
Tensile Strength: Yield (Proof), MPa 250
180

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1650
990
Melting Onset (Solidus), °C 1600
850
Specific Heat Capacity, J/kg-K 550
370
Thermal Conductivity, W/m-K 21
75
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
34
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 31
3.5
Embodied Energy, MJ/kg 500
56
Embodied Water, L/kg 120
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
65
Resilience: Unit (Modulus of Resilience), kJ/m3 280
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
10
Strength to Weight: Bending, points 26
12
Thermal Diffusivity, mm2/s 8.4
23
Thermal Shock Resistance, points 29
11

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 96.9 to 99
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7