MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. N08332 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
34
Fatigue Strength, MPa 170
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240
350
Tensile Strength: Ultimate (UTS), MPa 390
520
Tensile Strength: Yield (Proof), MPa 250
210

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 310
1050
Melting Completion (Liquidus), °C 1650
1390
Melting Onset (Solidus), °C 1600
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 31
5.4
Embodied Energy, MJ/kg 500
77
Embodied Water, L/kg 120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
140
Resilience: Unit (Modulus of Resilience), kJ/m3 280
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 8.4
3.1
Thermal Shock Resistance, points 29
12

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0