MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 213.0 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
73
Elongation at Break, % 8.6 to 11
1.5
Fatigue Strength, MPa 530 to 630
93
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
28
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
190
Tensile Strength: Yield (Proof), MPa 910 to 1110
130

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1610
670
Melting Onset (Solidus), °C 1650
480
Specific Heat Capacity, J/kg-K 560
850
Thermal Conductivity, W/m-K 6.8
130
Thermal Expansion, µm/m-K 8.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
94

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.4
3.2
Embodied Carbon, kg CO2/kg material 38
7.7
Embodied Energy, MJ/kg 610
140
Embodied Water, L/kg 200
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
120
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
44
Strength to Weight: Axial, points 62 to 75
16
Strength to Weight: Bending, points 50 to 56
23
Thermal Diffusivity, mm2/s 2.7
49
Thermal Shock Resistance, points 76 to 91
8.0

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
83.5 to 93
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
6.0 to 8.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 1.2
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
1.0 to 3.0
Titanium (Ti), % 87.4 to 91
0 to 0.25
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 2.5
Residuals, % 0
0 to 0.5