MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 5086 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 8.6 to 11
1.7 to 20
Fatigue Strength, MPa 530 to 630
88 to 180
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600 to 710
160 to 230
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
270 to 390
Tensile Strength: Yield (Proof), MPa 910 to 1110
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1650
590
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 6.8
130
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
8.8
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62 to 75
28 to 40
Strength to Weight: Bending, points 50 to 56
34 to 44
Thermal Diffusivity, mm2/s 2.7
52
Thermal Shock Resistance, points 76 to 91
12 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
93 to 96.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0.2 to 0.7
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 87.4 to 91
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants