MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 5252 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 8.6 to 11
4.5 to 11
Fatigue Strength, MPa 530 to 630
100 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
25
Shear Strength, MPa 600 to 710
140 to 160
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
230 to 290
Tensile Strength: Yield (Proof), MPa 910 to 1110
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1650
610
Specific Heat Capacity, J/kg-K 560
910
Thermal Conductivity, W/m-K 6.8
140
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
8.7
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
210 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 62 to 75
23 to 30
Strength to Weight: Bending, points 50 to 56
31 to 36
Thermal Diffusivity, mm2/s 2.7
57
Thermal Shock Resistance, points 76 to 91
10 to 13

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
96.6 to 97.8
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.080
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0 to 0.050
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1