MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 6182 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 8.6 to 11
6.8 to 13
Fatigue Strength, MPa 530 to 630
63 to 99
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600 to 710
140 to 190
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
230 to 320
Tensile Strength: Yield (Proof), MPa 910 to 1110
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1650
600
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 6.8
160
Thermal Expansion, µm/m-K 8.9
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
8.4
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62 to 75
23 to 32
Strength to Weight: Bending, points 50 to 56
30 to 38
Thermal Diffusivity, mm2/s 2.7
65
Thermal Shock Resistance, points 76 to 91
10 to 14

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
95 to 97.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0
0.5 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.9 to 1.3
Titanium (Ti), % 87.4 to 91
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15