MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 7049A Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 8.6 to 11
5.0 to 5.7
Fatigue Strength, MPa 530 to 630
180
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
27
Shear Strength, MPa 600 to 710
340 to 350
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
580 to 590
Tensile Strength: Yield (Proof), MPa 910 to 1110
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1650
430
Specific Heat Capacity, J/kg-K 560
850
Thermal Conductivity, W/m-K 6.8
130
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
3.1
Embodied Carbon, kg CO2/kg material 38
8.2
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
1800 to 1990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
44
Strength to Weight: Axial, points 62 to 75
52 to 53
Strength to Weight: Bending, points 50 to 56
50 to 51
Thermal Diffusivity, mm2/s 2.7
50
Thermal Shock Resistance, points 76 to 91
25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
84.6 to 89.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
1.2 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 87.4 to 91
0 to 0.25
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15