MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. ACI-ASTM CB30 Steel

Grade 5 titanium belongs to the titanium alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
500
Tensile Strength: Yield (Proof), MPa 910 to 1110
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
940
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1650
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
21
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
2.3
Embodied Energy, MJ/kg 610
33
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
18
Strength to Weight: Bending, points 50 to 56
18
Thermal Diffusivity, mm2/s 2.7
5.6
Thermal Shock Resistance, points 76 to 91
17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0
0 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
72.9 to 82
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0