MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. ACI-ASTM CF20 Steel

Grade 5 titanium belongs to the titanium alloys classification, while ACI-ASTM CF20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is ACI-ASTM CF20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
50
Fatigue Strength, MPa 530 to 630
240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
530
Tensile Strength: Yield (Proof), MPa 910 to 1110
250

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
970
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1650
1410
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
16
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
3.1
Embodied Energy, MJ/kg 610
44
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
19
Strength to Weight: Bending, points 50 to 56
19
Thermal Diffusivity, mm2/s 2.7
4.3
Thermal Shock Resistance, points 76 to 91
11

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 0
18 to 21
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
64.2 to 74
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
8.0 to 11
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0