MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. AISI 204 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
23 to 39
Fatigue Strength, MPa 530 to 630
320 to 720
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600 to 710
500 to 700
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
730 to 1100
Tensile Strength: Yield (Proof), MPa 910 to 1110
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
850
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1650
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
15
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
2.4
Embodied Energy, MJ/kg 610
35
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
360 to 2940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
27 to 40
Strength to Weight: Bending, points 50 to 56
24 to 31
Thermal Diffusivity, mm2/s 2.7
4.1
Thermal Shock Resistance, points 76 to 91
16 to 24

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
69.6 to 76.4
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0 to 0.050
0.15 to 0.3
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants