MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. AISI 310 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
34 to 45
Fatigue Strength, MPa 530 to 630
240 to 280
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
78
Shear Strength, MPa 600 to 710
420 to 470
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
600 to 710
Tensile Strength: Yield (Proof), MPa 910 to 1110
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1040
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1650
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
15
Thermal Expansion, µm/m-K 8.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
25
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
4.3
Embodied Energy, MJ/kg 610
61
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
170 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
21 to 25
Strength to Weight: Bending, points 50 to 56
20 to 22
Thermal Diffusivity, mm2/s 2.7
3.9
Thermal Shock Resistance, points 76 to 91
14 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.25
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
48.2 to 57
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0