MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. ASTM A387 Grade 12 Steel

Grade 5 titanium belongs to the titanium alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
25
Fatigue Strength, MPa 530 to 630
190 to 230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 600 to 710
300 to 330
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
470 to 520
Tensile Strength: Yield (Proof), MPa 910 to 1110
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
430
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
44
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.8
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.6
Embodied Energy, MJ/kg 610
21
Embodied Water, L/kg 200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
180 to 250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
16 to 18
Strength to Weight: Bending, points 50 to 56
17 to 18
Thermal Diffusivity, mm2/s 2.7
12
Thermal Shock Resistance, points 76 to 91
14 to 15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97 to 98.2
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants