MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. ASTM A387 Grade 5 Steel

Grade 5 titanium belongs to the titanium alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
20 to 21
Fatigue Strength, MPa 530 to 630
160 to 240
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 600 to 710
310 to 380
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
500 to 600
Tensile Strength: Yield (Proof), MPa 910 to 1110
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 330
510
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
40
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.3
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.7
Embodied Energy, MJ/kg 610
23
Embodied Water, L/kg 200
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
140 to 320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
18 to 21
Strength to Weight: Bending, points 50 to 56
18 to 20
Thermal Diffusivity, mm2/s 2.7
11
Thermal Shock Resistance, points 76 to 91
14 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
92.1 to 95.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants