MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.0411 Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.0411 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
12 to 26
Fatigue Strength, MPa 530 to 630
200 to 320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 21 to 25
60 to 74
Shear Modulus, GPa 40
73
Shear Strength, MPa 600 to 710
300 to 350
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
420 to 570
Tensile Strength: Yield (Proof), MPa 910 to 1110
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
52
Thermal Expansion, µm/m-K 8.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
18
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
190 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
15 to 20
Strength to Weight: Bending, points 50 to 56
16 to 20
Thermal Diffusivity, mm2/s 2.7
14
Thermal Shock Resistance, points 76 to 91
13 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.18 to 0.22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
98.7 to 99.1
Manganese (Mn), % 0
0.7 to 0.9
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0