MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4361 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
43
Fatigue Strength, MPa 530 to 630
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 600 to 710
440
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
630
Tensile Strength: Yield (Proof), MPa 910 to 1110
250

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 330
940
Melting Completion (Liquidus), °C 1610
1370
Melting Onset (Solidus), °C 1650
1330
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 6.8
14
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.4
7.6
Embodied Carbon, kg CO2/kg material 38
3.6
Embodied Energy, MJ/kg 610
52
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
23
Strength to Weight: Bending, points 50 to 56
21
Thermal Diffusivity, mm2/s 2.7
3.7
Thermal Shock Resistance, points 76 to 91
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
58.7 to 65.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 16
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0