MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4547 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
39
Fatigue Strength, MPa 530 to 630
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 600 to 710
510
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
750
Tensile Strength: Yield (Proof), MPa 910 to 1110
340

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1090
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 6.8
14
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
5.6
Embodied Energy, MJ/kg 610
75
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
26
Strength to Weight: Bending, points 50 to 56
23
Thermal Diffusivity, mm2/s 2.7
3.8
Thermal Shock Resistance, points 76 to 91
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 0
0.5 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
51 to 56.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0 to 0.050
0.18 to 0.25
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0