MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4571 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4571 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4571 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
14 to 40
Fatigue Strength, MPa 530 to 630
200 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 600 to 710
410 to 550
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
600 to 900
Tensile Strength: Yield (Proof), MPa 910 to 1110
230 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
950
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1650
1400
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
15
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
3.9
Embodied Energy, MJ/kg 610
54
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
130 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
21 to 32
Strength to Weight: Bending, points 50 to 56
20 to 26
Thermal Diffusivity, mm2/s 2.7
4.0
Thermal Shock Resistance, points 76 to 91
13 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16.5 to 18.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
61.7 to 71
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10.5 to 13.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0 to 0.7
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants