MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.6553 Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
19 to 21
Fatigue Strength, MPa 530 to 630
330 to 460
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
710 to 800
Tensile Strength: Yield (Proof), MPa 910 to 1110
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
420
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
39
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.7
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.6
Embodied Energy, MJ/kg 610
21
Embodied Water, L/kg 200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
600 to 1190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
25 to 28
Strength to Weight: Bending, points 50 to 56
23 to 24
Thermal Diffusivity, mm2/s 2.7
10
Thermal Shock Resistance, points 76 to 91
21 to 23

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
95.6 to 98.2
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
0.4 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0 to 0.030
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants