MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. CC493K Bronze

Grade 5 titanium belongs to the titanium alloys classification, while CC493K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 8.6 to 11
14
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
270
Tensile Strength: Yield (Proof), MPa 910 to 1110
140

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1610
960
Melting Onset (Solidus), °C 1650
880
Specific Heat Capacity, J/kg-K 560
360
Thermal Conductivity, W/m-K 6.8
61
Thermal Expansion, µm/m-K 8.9
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
3.3
Embodied Energy, MJ/kg 610
53
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62 to 75
8.6
Strength to Weight: Bending, points 50 to 56
11
Thermal Diffusivity, mm2/s 2.7
19
Thermal Shock Resistance, points 76 to 91
10

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
79 to 86
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
2.0 to 5.0
Residuals, % 0 to 0.4
0