MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. Nickel 600

Grade 5 titanium belongs to the titanium alloys classification, while nickel 600 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
3.4 to 35
Fatigue Strength, MPa 530 to 630
220 to 300
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 600 to 710
430 to 570
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
650 to 990
Tensile Strength: Yield (Proof), MPa 910 to 1110
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1650
1350
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 6.8
14
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.4
8.5
Embodied Carbon, kg CO2/kg material 38
9.0
Embodied Energy, MJ/kg 610
130
Embodied Water, L/kg 200
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62 to 75
21 to 32
Strength to Weight: Bending, points 50 to 56
20 to 26
Thermal Diffusivity, mm2/s 2.7
3.6
Thermal Shock Resistance, points 76 to 91
19 to 29

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
6.0 to 10
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
72 to 80
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants